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power spectral density functions are replaced with their aliased peri-
odic counterparts. Evaluating these periodic functions, which are usu-
ally expressed as infinite sums of periodically shifted spectral densi-
ties, is simplified by a method based on contour integration. The ex-
ample using a second-order innovations representation demonstrated
the simplicity of this technique. As with the nonaliased case, the aliased
Wiener filter requires complete knowledge of the second-order statis-
tics of the processes of interest. In practice, we would model these pro-
cesses using such a (factorable) representation from which we could
obtain the necessary second-order statistics. Since the noncausal so-
lution discussed herein is unrealizable, we would need to implement a
causal form of the filter either by truncating and delaying the noncausal
form or by solving the causal estimation problem through the use of
factorization techniques such as that proposed by Bode and Shannon
[4].
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Noise Amplification of Periodic Nonuniform Sampling

Daniel Seidner and Meir Feder

Abstract—In this correspondence, we discuss periodic nonuniform sam-
pling as described by Yen. Such a sampling scheme is more sensitive to ad-
ditive white noise than uniform sampling. We give here an explicit formula
for the noise amplification of periodic nonuniform sampling compared with
uniform sampling.

Index Terms—Nonuniform sampling, quantization, signal reconstruc-
tion, signal sampling.

I. INTRODUCTION

It is well known that uniform sampling is less sensitive to additive
white noise than other forms of sampling such as derivative sampling
and “bunched” or periodic nonuniform sampling (see Bracewell [1], for
example). A good review of sensitivity issues can be found in Marks
[2]. In this correspondence, we give a quantitative measure to describe
the noise sensitivity of periodic nonuniform sampling compared with
uniform sampling.

We discuss the case of a bandlimited signalf(t) with bandwidth
2B, i.e., its Fourier transformF (!) is zero forj!j > B. We sample
this signal so that the average rate equals the Nyquist rate ofB=� sam-
ples/s. In every period ofM�=B seconds, we haveM samples at times
�1; �2; � � � ; �M relative to the beginning of the period. This scheme
was first described by Yen [3], who also provided the explicit interpo-
lation formula.

The analysis conducted by Yen assumed an exact knowledge of the
value of the samples. In practice, we never have the exact samples
value due to quantization and noise. Thus, an interesting question is
the quality of the reconstruction in the presence of noise. We specifi-
cally discuss the case where the measurement noise is independent of
the signal and white.

When adding a white quantization noise to the samples, we have a
reconstruction errorvr(t). Its variance, which is denotedEfjvr(t)j2g,
depends on the sampling scheme.

It is convenient to represent the periodic nonuniform sampling ac-
cording to Papoulis’ generalized sampling expansion (GSE) [4]. In a
GSE system, the input is fed toM filters. To assure reconstruction, the
M outputs of these filters can be sampled simultaneously at1=M th of
the Nyquist rate, i.e., the sampling period isM�=B. Choosing theM
filters to be time shift elements with

Hk(!) = ej!�k (1)

whereHk(!) is the Fourier transform of thekth filter and wherek =
1; 2; � � � ; M results in a GSE system that is equivalent to the nonuni-
form sampling scheme described above.

II. A NALYSIS

We start our analysis by adding a zero mean discrete stochastic noise
sequence to each of the sample sequences resulting from sampling the
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M output channels of the GSE system, prior to reconstruction. We de-
note thenth noise value, which is added to thenth sample of thekth
channel, asvk(nT ), where belowdisplayskip20pt

Efvk(nT )v
�
q (mT )g = �2v�k; q�n;m (2)

and vk(nT ) is a zero mean random variable. This is equivalent to
adding a zero mean discrete stochastic white noise sequence with
variance�2v to the sequence resulting from the periodic nonuniform
sampling. We define the noise amplification factorA� as belowdis-
playskip20pt

A� =
Efjvr(t)j2g

�2v
(3)

whereEfjvr(t)j2g is the time average ofEfjvr(t)j2g, andA� is equal
to Marks’ normalized interpolation noise variance (NINV) [2].

We use the analysis of white additive noise in GSE systems as de-
veloped in [5]. In this analysis, we found that belowdisplayskip20pt

A� =
1

c

Z �B+c

�B

MX
k=1

MX
l=1

jT�1kl (!)j
2 d!

=
1

c

Z �B+c

�B

trfT(!)�1
T

T(!)�1
�

g d! (4)

whereT(!) is Papoulis’ GSE matrix, which is anM � M matrix
whose(k; l)th component is given by belowdisplayskip20pt

Tkl(!) = Hk(! + (l � 1) � c) (5)

and wherec = 2B=M . A similar expression has been derived by
Cheung and Marks in [6].

In our case,Hk(!) = ej!�k ; thereforebelowdisplayskip20pt

Tkl(!) = ej!�kej(l�1)c�k (6)

or

T(!) =B(!)A (7)

where belowdisplayskip20pt

B(!) = diagfej!�1 ; ej!�2 ; � � � ; ej!�M g (8)

and

A =

2
6666664

1 ejc�1 ej2c�1 � � � ej(M�1)�1

1 ejc�2 ej2c�2 � � � ej(M�1)�2

� �

� �

� �

1 ejc�M ej2c�M � � � ej(M�1)�M

3
7777775
: (9)

Since trfT(!)�1
T

T(!)�1
�

g = trfA�1T
A
�1�g, we only need to

findA�1 in order to calculate the noise amplification factor. Note that
A is a Vandermonde matrix for which the formula for the inverse is
known (see e.g., [7] or [8]). Here, we use a slightly different repre-
sentation. Letxk = ejc�k . The(k; l)th component ofA is belowdis-
playskip15pt

Akl = x
(l�1)
k (10)

and the matrixA therefore becomes

A =

2
6666664

1 x1 x21 � � � x
(M�1)
1

1 x2 x22 � � � x
(M�1)
2

� �

� �

� �

1 xM x2M � � � x
(M�1)
M

3
7777775

(11)

which is the classic Vandermonde matrix. Therefore

A�1kl =
al;k�1

MY
i=1
i6=l

(xl � xi)

(12)

wherefal; k�1gMk=1 are the coefficients of the polynomialPl(x)

Pl(x) =
MY
i=1
i6=l

(x � xi) =
M�1X
q=0

al; qx
q: (13)

Now

trfA�1T
A
�1�g =
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jA�1kl j
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=
MX
l=1

PM
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: (14)

We find the sum
PM

k=1 jal; k�1j
2 using Parseval theorem. Con-

sider the discrete Fourier transform (DFT) of the sequence
fal; 0; al; 1; � � � ; al; M�1g. The kth component ~Al; k of this
DFT is

~Al; k =
M�1X
q=0

al; qe
�j(2�=M)kq = Pl(e

�j(2�=M)k)

k = 0; � � � ; M � 1: (15)

According to the Parseval theorem, we have
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Fig. 1. Noise amplification of periodic nonuniform sampling(M = 3).

Therefore, we can write
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Using the relationsxi = ejc�i , jejc�1 � ejc�2 j2 = 4 sin2(c=2)(�1 �
�2), andej(2�=M)k = ejc(�=B)k, we have
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1

M

MX
l=1

M�1X
k=0

MY
i=1
i6=l

sin2
c

2

�
k
�

B
� �i
�

MY
i=1

i6=l

sin2
c

2
(�l � �i)

: (18)

This equation gives the noise amplification as a function of the�i ’s
that define the nonuniform sampling. We see that if we choose�i =
(i � 1)�=B, which means uniform sampling, we get the minimum
noise amplificationA� = 1, i.e.,Efjvr(t)j2g = �2v. As shown in [5],
uniform sampling is an optimal sampling scheme.

Fig. 1 describesA� of a periodic nonuniform sampling withM = 3
and�1 = 0 as a function of�2 and�3, which change from 0 to3�=B.

III. CONCLUSION

We have found the explicit formula of the noise amplification for pe-
riodic nonuniform sampling. This formula gives a quantitative measure

to the amount of reconstruction noise in periodic nonuniform sampling
created by white quantization noise, compared with uniform sampling,
which is an optimal sampling scheme. The result in this correspondence
is an interesting particular case of the sensitivity analysis of [5].
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Wideband Beamspace Adaptive Array Utilizing FIR Fan
Filters for Multibeam Forming

Takashi Sekiguchi and Yoshio Karasawa

Abstract—We propose a wideband beamspace adaptive array that uses
FIR fan filters to construct a multibeam forming network. We also describe
a method for designing such FIR fan filters. Approximation is achieved by
combining spectral transformation and the window method such that the
beam patterns including the sidelobe characteristics of the resulting fan
filters are virtually frequency independent. This is a requirement of beam-
forming networks used in multibeam forming. Fan filters designed with the
proposed method are used to demonstrate that the beam-space adaptive
array can suppress interference signals having a wide fractional bandwidth
and that the array has fast convergence.

Index Terms—Adaptive arrays, array processing, fan filters, multidimen-
sional digital filters.

I. INTRODUCTION

In the fields of radio communications, radar, and acoustics, wide-
band adaptive beamforming is an important technique for rejecting in-
terference signals whose incident direction into a sensor array differs
from that of the desired signals.

Tapped-delay line circuits with adaptive coefficients are often used
for wideband adaptive arrays [1]. In general, however, they require
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